Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 122(6): 570-582, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29801802

RESUMO

Here, we report that the Neurospora crassa FLB-3 protein, the ortholog of the Aspergillus nidulans FlbC transcription factor, is required for developmental control. Deletion of flb-3 leads to changes in hyphae morphology and affects sexual and asexual development. We identified, as putative FLB-3 targets, the N. crassa aba-1, wet-1 and vos-1 genes, orthologs of the ones involved in A. nidulans asexual development and that work downstream of FlbC (abaA, wetA and vosA). In N. crassa, these three genes require FLB-3 for proper expression; however, they appear not to be required for normal development, as demonstrated by gene expression analyses during vegetative growth and asexual development. Moreover, mutant strains in the three genes conidiate well and produce viable conidia. We also determined FLB-3 DNA-binding preferences via protein-binding microarrays (PBMs) and demonstrated by chromatin immunoprecipitation (ChIP) that FLB-3 binds the aba-1, wet-1 and vos-1 promoters. Our data support an important role for FLB-3 in N. crassa development and highlight differences between the regulatory pathways controlled by this transcription factor in different fungal species.


Assuntos
Proteínas Fúngicas/fisiologia , Neurospora crassa/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Proteínas Fúngicas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Hifas/genética , Hifas/crescimento & desenvolvimento , Neurospora crassa/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Fatores de Transcrição/genética
2.
BMC Genomics ; 18(1): 457, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28599643

RESUMO

BACKGROUND: Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. RESULTS: We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. CONCLUSIONS: We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the reserve carbohydrate glycogen and trehalose. We also demonstrated that calcium stress affects the reserve carbohydrate levels and the response to calcium stress may require PAC-3. Considering that the reserve carbohydrate metabolism may be subjected to different signaling pathways control, our data contribute to the understanding of the N. crassa responses under pH and calcium stresses.


Assuntos
Cálcio/metabolismo , Glicogênio/metabolismo , Neurospora crassa/citologia , Neurospora crassa/metabolismo , Transdução de Sinais , Trealose/metabolismo , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Neurospora crassa/genética , Fatores de Transcrição/metabolismo
3.
PLoS One ; 11(8): e0161659, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557053

RESUMO

Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism.


Assuntos
Concentração de Íons de Hidrogênio , Neurospora crassa/genética , Neurospora crassa/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Melaninas/biossíntese , Monofenol Mono-Oxigenase , Mutação , Fenótipo , Regiões Promotoras Genéticas , Transporte Proteico , Proteólise , alfa Carioferinas/metabolismo
4.
G3 (Bethesda) ; 6(5): 1327-43, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26994287

RESUMO

When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms.


Assuntos
Sítios de Ligação , Metabolismo dos Carboidratos , Neurospora crassa/genética , Neurospora crassa/metabolismo , Motivos de Nucleotídeos , Elementos de Resposta , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Imunoprecipitação da Cromatina , Meio Ambiente , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Estresse Fisiológico/genética
5.
Fungal Genet Biol ; 77: 82-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25889113

RESUMO

The transcription factor CreA/Mig1/CRE-1 is a repressor protein that regulates the use of alternative carbon sources via a mechanism known as Carbon Catabolite Repression (CCR). In Saccharomyces cerevisiae, Mig1 recruits the complex Ssn6-Tup1, the Neurospora crassa RCM-1 and RCO-1 orthologous proteins, respectively, to bind to promoters of glucose-repressible genes. We have been studying the regulation of glycogen metabolism in N. crassa and the identification of the RCO-1 corepressor as a regulator led us to investigate the regulatory role of CRE-1 in this process. Glycogen content is misregulated in the rco-1(KO), rcm-1(RIP) and cre-1(KO) strains, and the glycogen synthase phosphorylation is decreased in all strains, showing that CRE-1, RCO-1 and RCM-1 proteins are involved in glycogen accumulation and in the regulation of GSN activity by phosphorylation. We also confirmed the regulatory role of CRE-1 in CCR and its nuclear localization under repressing condition in N. crassa. The expression of all glycogenic genes is misregulated in the cre-1(KO) strain, suggesting that CRE-1 also controls glycogen metabolism by regulating gene expression. The existence of a high number of the Aspergillus nidulans CreA motif (5'-SYGGRG-3') in the glycogenic gene promoters led us to analyze the binding of CRE-1 to some DNA motifs both in vitro by DNA gel shift and in vivo by ChIP-qPCR analysis. CRE-1 bound in vivo to all motifs analyzed demonstrating that it down-regulates glycogen metabolism by controlling gene expression and GSN phosphorylation.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Proteínas Fúngicas/metabolismo , Glicogênio/metabolismo , Neurospora crassa/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Carbono/metabolismo , Glicogênio/biossíntese , Glicogênio/genética , Glicogênio Sintase/metabolismo , Mutação , Neurospora crassa/genética , Fosforilação , Regiões Promotoras Genéticas
6.
Biochem J ; 464(3): 323-34, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25253091

RESUMO

Glycogen functions as a carbohydrate reserve in a variety of organisms and its metabolism is highly regulated. The activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of the synthesis and degradation processes, respectively, are regulated by allosteric modulation and reversible phosphorylation. To identify the protein kinases affecting glycogen metabolism in Neurospora crassa, we performed a screen of 84 serine/threonine kinase knockout strains. We identified multiple kinases that have already been described as controlling glycogen metabolism in different organisms, such as NcSNF1, NcPHO85, NcGSK3, NcPKA, PSK2 homologue and NcATG1. In addition, many hypothetical kinases have been implicated in the control of glycogen metabolism. Two kinases, NcIME-2 and NcNIMA, already functionally characterized but with no functions related to glycogen metabolism regulation, were also identified. Among the kinases identified, it is important to mention the role of NcSNF1. We showed in the present study that this kinase was implicated in glycogen synthase phosphorylation, as demonstrated by the higher levels of glycogen accumulated during growth, along with a higher glycogen synthase (GSN) ±glucose 6-phosphate activity ratio and a lesser set of phosphorylated GSN isoforms in strain Ncsnf1KO, when compared with the wild-type strain. The results led us to conclude that, in N. crassa, this kinase promotes phosphorylation of glycogen synthase either directly or indirectly, which is the opposite of what is described for Saccharomyces cerevisiae. The kinases also play a role in gene expression regulation, in that gdn, the gene encoding the debranching enzyme, was down-regulated by the proteins identified in the screen. Some kinases affected growth and development, suggesting a connection linking glycogen metabolism with cell growth and development.


Assuntos
Glicogênio Sintase/metabolismo , Neurospora crassa/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Regulação Enzimológica da Expressão Gênica , Glicogênio/biossíntese , Ensaios de Triagem em Larga Escala , Neurospora crassa/química , Neurospora crassa/genética , Organismos Geneticamente Modificados , Fosforilação , Proteínas Quinases/isolamento & purificação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/isolamento & purificação , Trealose/metabolismo
7.
PLoS One ; 7(8): e44258, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952943

RESUMO

Glycogen is a polysaccharide widely distributed in microorganisms and animal cells and its metabolism is under intricate regulation. Its accumulation in a specific situation results from the balance between glycogen synthase and glycogen phosphorylase activities that control synthesis and degradation, respectively. These enzymes are highly regulated at transcriptional and post-translational levels. The existence of a DNA motif for the Aspergillus nidulans pH responsive transcription factor PacC in the promoter of the gene encoding glycogen synthase (gsn) in Neurospora crassa prompted us to investigate whether this transcription factor regulates glycogen accumulation. Transcription factors such as PacC in A. nidulans and Rim101p in Saccharomyces cerevisiae play a role in the signaling pathway that mediates adaptation to ambient pH by inducing the expression of alkaline genes and repressing acidic genes. We showed here that at pH 7.8 pacC was over-expressed and gsn was down-regulated in wild-type N. crassa coinciding with low glycogen accumulation. In the pacC(KO) strain the glycogen levels and gsn expression at alkaline pH were, respectively, similar to and higher than the wild-type strain at normal pH (5.8). These results characterize gsn as an acidic gene and suggest a regulatory role for PACC in gsn expression. The truncated recombinant protein, containing the DNA-binding domain specifically bound to a gsn DNA fragment containing the PacC motif. DNA-protein complexes were observed with extracts from cells grown at normal and alkaline pH and confirmed by ChIP-PCR analysis. The PACC present in these extracts showed equal molecular mass, indicating that the protein is already processed at normal pH, in contrast to A. nidulans. Together, these results show that the pH signaling pathway controls glycogen accumulation by regulating gsn expression and suggest the existence of a different mechanism for PACC activation in N. crassa.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glicogênio Sintase/genética , Glicogênio/metabolismo , Neurospora crassa/enzimologia , Neurospora crassa/genética , Transdução de Sinais/genética , Ácidos/metabolismo , Álcalis/metabolismo , Sítios de Ligação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Inativação de Genes , Genes Fúngicos/genética , Glicogênio Sintase/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Mutação/genética , Neurospora crassa/crescimento & desenvolvimento , Fenótipo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Proteínas Recombinantes/metabolismo , Estresse Fisiológico/genética
8.
Mol Cell Proteomics ; 10(11): M111.007963, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21768394

RESUMO

Transcription factors play a key role in transcription regulation as they recognize and directly bind to defined sites in promoter regions of target genes, and thus modulate differential expression. The overall process is extremely dynamic, as they have to move through the nucleus and transiently bind to chromatin in order to regulate gene transcription. To identify transcription factors that affect glycogen accumulation in Neurospora crassa, we performed a systematic screen of a deletion strains set generated by the Neurospora Knockout Project and available at the Fungal Genetics Stock Center. In a wild-type strain of N. crassa, glycogen content reaches a maximal level at the end of the exponential growth phase, but upon heat stress the glycogen content rapidly drops. The gene encoding glycogen synthase (gsn) is transcriptionally down-regulated when the mycelium is exposed to the same stress condition. We identified 17 deleted strains having glycogen accumulation profiles different from that of the wild-type strain under both normal growth and heat stress conditions. Most of the transcription factors identified were annotated as hypothetical protein, however some of them, such as the PacC, XlnR, and NIT2 proteins, were biochemically well-characterized either in N. crassa or in other fungi. The identification of some of the transcription factors was coincident with the presence of DNA-binding motifs specific for the transcription factors in the gsn 5'-flanking region, and some of these DNA-binding motifs were demonstrated to be functional by Electrophoretic Mobility Shift Assay (EMSA) experiments. Strains knocked-out in these transcription factors presented impairment in the regulation of gsn expression, suggesting that the transcription factors regulate glycogen accumulation by directly regulating gsn gene expression. Five selected mutant strains showed defects in cell cycle progression, and two transcription factors were light-regulated. The results indicate that there are connections linking different cellular processes, such as metabolism control, biological clock, and cell cycle progression.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Glicogênio/metabolismo , Neurospora crassa/metabolismo , Fatores de Transcrição/genética , Sequência de Aminoácidos , Ciclo Celular , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Técnicas de Inativação de Genes , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Dados de Sequência Molecular , Micélio/genética , Micélio/metabolismo , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Ligação Proteica , Estresse Fisiológico , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...